magrittr: A Forward-Pipe Operator for R
Rにパイプ演算子を導入する
- CRAN: http://cran.r-project.org/web/packages/magrittr/index.html
- GitHub: https://github.com/smbache/magrittr
> library(magrittr)
バージョン: 1.5
関数名 | 概略 |
---|---|
%$% |
magrittr exposition pipe-operator |
%<>% |
magrittr compound assignment pipe-operator |
%>% |
magrittr forward-pipe operator |
%T>% |
magrittr tee operator |
[[.fseq |
Extract function(s) from a functional sequence. |
debug_fseq |
Debugging function for functional sequences. |
debug_pipe |
Debugging function for magrittr pipelines. |
extract |
Aliases |
freduce |
Apply a list of functions sequentially |
functions |
Extract the function list from a functional sequence. |
magrittr |
magrittr - Ceci n'est pas un pipe |
print.fseq |
Print method for functional sequence. |
%$%
データフレームの変数を参照する
> iris %>%
+ subset(Sepal.Length > mean(Sepal.Length)) %$%
+ cor(Sepal.Length, Sepal.Width)
[1] 0.3361992
%<>%
> x <- rnorm(100)
> x
[1] 1.53261063 -0.23570036 -1.02642090 -0.71040656 0.25688371
[6] -0.24669188 -0.34754260 -0.95161857 -0.04502772 -0.78490447
[11] -1.66794194 -0.38022652 0.91899661 -0.57534696 0.60796432
[16] -1.61788271 -0.05556197 0.51940720 0.30115336 0.10567619
[21] -0.64070601 -0.84970435 -1.02412879 0.11764660 -0.94747461
[26] -0.49055744 -0.25609219 1.84386201 -0.65194990 0.23538657
[31] 0.07796085 -0.96185663 -0.07130809 1.44455086 0.45150405
[36] 0.04123292 -0.42249683 -2.05324722 1.13133721 -1.46064007
[41] 0.73994751 1.90910357 -1.44389316 0.70178434 -0.26219749
[46] -1.57214416 -1.51466765 -1.60153617 -0.53090652 -1.46175558
[51] 0.68791677 2.10010894 -1.28703048 0.78773885 0.76904224
[56] 0.33220258 -1.00837661 -0.11945261 -0.28039534 0.56298953
[61] -0.37243876 0.97697339 -0.37458086 1.05271147 -1.04917701
[66] -1.26015524 3.24103993 -0.41685759 0.29822759 0.63656967
[71] -0.48378063 0.51686204 0.36896453 -0.21538051 0.06529303
[76] -0.03406725 2.12845190 -0.74133610 -1.09599627 0.03778840
[81] 0.31048075 0.43652348 -0.45836533 -1.06332613 1.26318518
[86] -0.34965039 -0.86551286 -0.23627957 -0.19717589 1.10992029
[91] 0.08473729 0.75405379 -0.49929202 0.21444531 -0.32468591
[96] 0.09458353 -0.89536336 -1.31080153 1.99721338 0.60070882
> x %<>% abs() %>% sort()
> x
[1] 0.03406725 0.03778840 0.04123292 0.04502772 0.05556197 0.06529303
[7] 0.07130809 0.07796085 0.08473729 0.09458353 0.10567619 0.11764660
[13] 0.11945261 0.19717589 0.21444531 0.21538051 0.23538657 0.23570036
[19] 0.23627957 0.24669188 0.25609219 0.25688371 0.26219749 0.28039534
[25] 0.29822759 0.30115336 0.31048075 0.32468591 0.33220258 0.34754260
[31] 0.34965039 0.36896453 0.37243876 0.37458086 0.38022652 0.41685759
[37] 0.42249683 0.43652348 0.45150405 0.45836533 0.48378063 0.49055744
[43] 0.49929202 0.51686204 0.51940720 0.53090652 0.56298953 0.57534696
[49] 0.60070882 0.60796432 0.63656967 0.64070601 0.65194990 0.68791677
[55] 0.70178434 0.71040656 0.73994751 0.74133610 0.75405379 0.76904224
[61] 0.78490447 0.78773885 0.84970435 0.86551286 0.89536336 0.91899661
[67] 0.94747461 0.95161857 0.96185663 0.97697339 1.00837661 1.02412879
[73] 1.02642090 1.04917701 1.05271147 1.06332613 1.09599627 1.10992029
[79] 1.13133721 1.26015524 1.26318518 1.28703048 1.31080153 1.44389316
[85] 1.44455086 1.46064007 1.46175558 1.51466765 1.53261063 1.57214416
[91] 1.60153617 1.61788271 1.66794194 1.84386201 1.90910357 1.99721338
[97] 2.05324722 2.10010894 2.12845190 3.24103993
%T>
> rnorm(200) %>%
+ matrix(ncol = 2) %T>%
+ plot() %>%
+ colSums()