dismo: Species Distribution Modeling
種の分布モデリング
- CRAN: http://cran.r-project.org/web/packages/dismo/index.html
- Vignettes
> library(dismo)
> data("acaule")
バージョン: 1.1.1
関数名 | 概略 |
---|---|
Anguilla_train |
Anguilla australis distribution data |
DistModel-class |
Class "DistModel" |
ModelEvaluation-class |
Class "ModelEvaluation" |
acaule |
Solanum acaule data |
bioclim |
Bioclim |
biovars |
bioclimatic variables |
boxplot,ModelEvaluation-method |
Box plot of model evaluation data |
calc.deviance |
Calculate deviance |
circles |
Circles range |
convHull |
Convex hull model |
dcEvaluate |
Evaluate by distance class |
density |
density |
dismo-package |
Species distribution modeling |
domain |
Domain |
ecocrop |
Ecocrop model |
ecolim |
Ecolim model |
evaluate |
Model evaluation |
evaluateROCR |
Model testing with the ROCR package |
gbif |
Data from GBIF |
gbm.fixed |
gbm fixed |
gbm.holdout |
gbm holdout |
gbm.interactions |
gbm interactions |
gbm.perspec |
gbm perspective plot |
gbm.plot |
gbm plot |
gbm.plot.fits |
gbm plot fitted values |
gbm.simplify |
gbm simplify |
gbm.step |
gbm step |
geoDist |
Geographic distance model |
geoIDW |
Inverse-distance weighted model |
geocode |
Georeferencing with Google |
gmap |
Get a Google map |
gridSample |
Stratified regular sample on a grid |
kfold |
k-fold partitioning |
mahal |
Mahalanobis model |
maxent |
Maxent |
mess |
Multivariate environmental similarity surfaces (MESS) |
nicheEquivalency |
Niche equivalency |
nicheOverlap |
Niche overlap |
nullRandom |
Random null model |
pairs |
Pair plots |
plot,Bioclim,missing-method |
Plot predictor values |
plot,ModelEvaluation,character-method |
Plot model evaluation data |
pointValues |
point values |
predict |
Distribution model predictions |
prepareData |
Prepare data for model fitting |
pwdSample |
Pair-wise distance sampling |
randomPoints |
Random points |
response |
response plots |
ssb |
Spatial sorting bias |
threshold |
Find a threshold |
voronoi |
Voronoi polygons |
voronoiHull |
Voronoi hull model |
acaule
Solanum acauleの分布データ
> data("acaule")
> acaule %>% dplyr::glimpse()
Observations: 1,366
Variables: 25
$ species <chr> "Solanum acaule Bitter", "Solanum acaule...
$ continent <chr> "South America", "South America", NA, NA...
$ country <chr> "Argentina", "Peru", "Argentina", "Boliv...
$ adm1 <chr> "Jujuy", "Cusco", NA, NA, NA, NA, NA, NA...
$ adm2 <chr> "Santa Catalina", "Canchis", NA, NA, NA,...
$ locality <chr> "Santa Catalina: camino de salida del pu...
$ lat <dbl> -21.9000, -13.5000, -22.2666, -18.6333, ...
$ lon <dbl> -66.1000, -71.0000, -65.1333, -66.9500, ...
$ coordUncertaintyM <chr> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, ...
$ alt <dbl> NaN, 4500, 3800, 3700, 4080, 3780, 4300,...
$ institution <chr> "NY", "NY", "NLD037", "NLD037", "NLD037"...
$ collection <chr> "Herbarium", "Herbarium", "CGN-PGR", "CG...
$ catalogNumber <chr> "00745416", "00962455", "CGN17852", "CGN...
$ basisOfRecord <chr> "specimen", "specimen", "unknown", "unkn...
$ collector <chr> "G. C. Giberti", "A. Tupayachi H.", NA, ...
$ earliestDateCollected <chr> "1979-01-29", "2005-03-17", NA, NA, NA, ...
$ latestDateCollected <chr> "1979-01-29", "2005-03-17", NA, NA, NA, ...
$ gbifNotes <chr> "Data from GBIF data index - original va...
$ downloadDate <date> 2013-01-16, 2013-01-16, 2013-01-16, 201...
$ maxElevationM <chr> NA, "4500", NA, NA, NA, NA, NA, NA, NA, ...
$ minElevationM <chr> NA, "4500", "3800", "3700", "4080", "378...
$ maxDepthM <chr> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, ...
$ minDepthM <chr> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, ...
$ ISO2 <chr> "AR", "PE", "AR", "BO", "BO", "BO", "AR"...
$ cloc <chr> "Santa Catalina: camino de salida del pu...
circles
Arguments
- p... 座標位置を示す行列あるいはデータフレーム、SpatialPoints * object
- d
- lonlat
- n
- r
- dissolve
- ...
> r <- system.file("external/rlogo.grd", package = "raster") %>% raster::raster()
> # ポイントの座標データを作る(行列)
> pts <- matrix(c(17, 42, 85, 70, 19, 53, 26, 84, 84, 46, 48,
+ 85, 4, 95, 48, 54, 66, 74, 50, 48, 28, 73,
+ 38, 56, 43, 29, 63, 22, 46, 45, 7, 60, 46,
+ 34, 14, 51, 70, 31, 39, 26),
+ ncol = 2)
> train <- pts[1:12, ]
> test <- pts[13:20, ]
>
> (cc <- circles(p = train, lonlat = FALSE))
class : CirclesRange
variables: X1 X2
presence points: 12
X1 X2
1 17 28
2 42 73
3 85 38
4 70 56
5 19 43
6 53 29
7 26 63
8 84 22
9 84 46
10 46 45
(... ... ...)
> # plot(r)
> # plot(geometry(cc), border = 'red', lwd= 2 , add = TRUE)
> # points(train, col = 'red', pch = 20, cex = 2)
> # points(test, col = 'black', pch = 20, cex = 2)
evaluate
モデル評価
ref) threshold()
Arguments
- p
- a
- model
- x
- tr
- ...
> # Predict value
> p <- rnorm(50, mean = 0.7, sd = 0.3)
> a <- rnorm(50, mean = 0.4, sd = 0.4)
> (e <- evaluate(p = p, a = a))
class : ModelEvaluation
n presences : 50
n absences : 50
AUC : 0.7612
cor : 0.4592102
max TPR+TNR at : 0.5159163
geocode
Googleによるジオコーディング
> geocode(c("San Jose", "San Jose, Mexico"))
originalPlace interpretedPlace
1 San Jose San Jose, CA, USA
2 San Jose San Jose, NM 87565, USA
3 San Jose San Jose, IL 62682, USA
4 San Jose, Mexico San José, 13020 Ciudad de México, D.F., Mexico
5 San Jose, Mexico San Jose, 94560 Córdoba, Ver., Mexico
6 San Jose, Mexico San José, 64270 Monterrey, N.L., Mexico
7 San Jose, Mexico San Jose, 56377 Chicoloapan de Juárez, Méx., Mexico
8 San Jose, Mexico Barrio de San José, Campeche, Camp., Mexico
9 San Jose, Mexico San José, 97189 Mérida, Yuc., Mexico
longitude latitude xmin xmax ymin ymax uncertainty
1 -121.88633 37.33821 -122.04567 -121.58915 37.12449 37.46954 27614
2 -105.47501 35.39727 -105.47636 -105.47366 35.39592 35.39861 193
3 -89.60288 40.30560 -89.61190 -89.59636 40.29810 40.31289 981
4 -98.99770 19.27665 -99.00210 -98.99163 19.26935 19.28091 793
5 -96.94178 18.89627 -96.94939 -96.93765 18.89262 18.90129 705
6 -100.33225 25.72423 -100.33742 -100.33059 25.72119 25.72639 291
7 -98.91764 19.41027 -98.92396 -98.91190 19.40616 19.41493 794
8 -90.54032 19.83579 -90.54896 -90.53474 19.83007 19.84056 788
9 -89.61045 20.94650 -89.61447 -89.60515 20.94231 20.95285 624
> c("Chiyoda, Tokyo", "Yokohama, Japan") %>% geocode()
originalPlace interpretedPlace longitude latitude
1 Chiyoda, Tokyo Chiyoda, Tokyo, Japan 139.7536 35.69400
2 Yokohama, Japan Yokohama, Kanagawa Prefecture, Japan 139.6380 35.44371
xmin xmax ymin ymax uncertainty
1 139.7299 139.7828 35.66855 35.70522 2924
2 139.4648 139.7254 35.31262 35.59286 18347
gbif
> gbif("solanum", download = FALSE)
[1] 847413
nicheOverlap
種の分布からのニッチ重複を求める
Arguments
- x
- y
- stat
- mask
- checkNegatives
> r1 <- raster::raster(nr = 18, nc = 36)
> r2 <- raster::raster(nr = 18, nc = 36)
> set.seed(0)
> r1[] <- runif(ncell(r1))
> r2[] <- runif(ncell(r1))
> nicheOverlap(r1, r2)
[1] 0.8891728