tsoutliers: Detection of Outliers in Time Series
時系列データにおける外れ値の検出
- CRAN: http://cran.r-project.org/web/packages/tsoutliers/index.html
- URL: http://jalobe.com/
- Vignettes: https://cran.r-project.org/web/packages/tsoutliers/vignettes/tsoutliers-intro.pdf
> library(tsoutliers)
バージョン: 0.6
関数名 | 概略 |
---|---|
JarqueBera.test |
Jarque-Bera Test for Normality |
bde9915 |
Data Set: Working Paper 'bde9915' |
calendar.effects |
Calendar Effects |
coefs2poly |
Product of the Polynomials in an ARIMA Model |
hicp |
Data Set: Harmonised Indices of Consumer Prices |
ipi |
Data Set: Industrial Production Indices |
locate.outliers |
Stage I of the Procedure: Locate Outliers (Baseline Function) |
locate.outliers.oloop |
Stage I of the Procedure: Locate Outliers (Loop Around Functions) |
outliers |
Define Outliers in a Data Frame |
outliers.effects |
Create the Pattern of Different Types of Outliers |
outliers.regressors |
Regressor Variables for the Detection of Outliers |
outliers.tstatistics |
Test Statistics for the Significance of Outliers |
plot.tsoutliers |
Display Outlier Effects Detected by 'tsoutliers' |
remove.outliers |
Stage II of the Procedure: Remove Outliers |
tso |
Automatic Procedure for Detection of Outliers |
tsouliers-package |
Automatic Detection of Outliers in Time Series |
hicp
> hicp %>% class()
Error in eval(expr, envir, enclos): object 'hicp' not found
tso
> data("hicp")
> tso(y = log(hicp[[1]]))
Series: log(hicp[[1]])
ARIMA(1,1,0)(1,0,0)[12]
Coefficients:
ar1 sar1 TC19 TC133 LS215 AO220
0.1773 0.8499 0.0062 -0.0047 0.0063 -0.0034
s.e. 0.0606 0.0314 0.0013 0.0013 0.0015 0.0010
sigma^2 estimated as 0.000003887: log likelihood=1378.18
AIC=-2742.36 AICc=-2741.96 BIC=-2716.75
Outliers:
type ind time coefhat tstat
1 TC 19 1991:07 0.006203 4.747
2 TC 133 2001:01 -0.004726 -3.607
3 LS 215 2007:11 0.006323 4.204
4 AO 220 2008:04 -0.003441 -3.618
> tso(y = Nile, types = c("AO", "LS", "TC"),
+ tsmethod = "stsm",
+ args.tsmodel = list(model = "local-level"))
Call:
stsmFit(x = <S4 object of class structure("stsm", package = "stsm")>, stsm.method = "maxlik.td.optim",
xreg = structure(c(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1), .Dim = c(100L, 1L), .Dimnames = list(NULL,
"LS29")), method = "L-BFGS-B", KF.version = "KFKSDS", KF.args = structure(list(
P0cov = TRUE), .Names = "P0cov"), gr = "numerical")
Parameter estimates:
LS29 var1 var2
Estimate -247.78 16136 0
Std. error 11.71 1163 NaN
Log-likelihood: -633.0286
Convergence: 0
Number of iterations: 46 46
Variance-covariance matrix: optimHessian
Outliers:
type ind time coefhat tstat
1 LS 29 1899 -247.8 -21.16