ltm: Latent Trait Models under IRT

> library(ltm)
Loading required package: msm
Loading required package: polycor
Loading required package: mvtnorm
Loading required package: sfsmisc

Attaching package: 'sfsmisc'

The following object is masked from 'package:lme4':

    factorize

バージョン: 1.0.0


関数名 概略
Abortion Attitude Towards Abortion
Environment Attitude to the Environment
GoF.gpcm Goodness of Fit for Rasch Models
LSAT The Law School Admission Test (LSAT), Section VI
Mobility Women's Mobility
Science Attitude to Science and Technology
WIRS Workplace Industrial Relation Survey Data
anova.gpcm Anova method for fitted IRT models
biserial.cor Point-Biserial Correlation
coef.gpcm Extract Estimated Loadings
cronbach.alpha Cronbach's alpha
descript Descriptive Statistics
factor.scores Factor Scores - Ability Estimates
fitted.gpcm Fitted Values for IRT model
gh Gauss-Hermite Quadrature Points
gpcm Generalized Partial Credit Model - Polytomous IRT
grm Graded Response Model - Polytomous IRT
information Area under the Test or Item Information Curves
item.fit Item-Fit Statistics and P-values
ltm Latent Trait Model - Latent Variable Model for Binary Data
ltm-package Latent Trait Models for Item Response Theory Analyses
margins Fit of the model on the margins
mult.choice Multiple Choice Items to Binary Responses
person.fit Person-Fit Statistics and P-values
plot.descript Descriptive Statistics Plot method
plot.fscores Factor Scores - Ability Estimates Plot method
plot.gpcm Plot method for fitted IRT models rasch Rasch Model
rcor.test Pairwise Associations between Items using a Correlation Coefficient
residuals.gpcm Residuals for IRT models
rmvlogis Generate Random Responses Patterns under Dichotomous and Polytomous IRT models
summary.gpcm Summary method for fitted IRT models
testEquatingData Prepares Data for Test Equating
tpm Birnbaum's Three Parameter Model
unidimTest Unidimensionality Check using Modified Parallel Analysis
vcov.gpcm vcov method for fitted IRT models

Abortion

> Abortion %>% {
+   print(class(.))
+   dplyr::glimpse(.)
+ }
[1] "data.frame"
Observations: 379
Variables: 4
$ Item 1 (int) 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1...
$ Item 2 (int) 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1...
$ Item 3 (int) 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1...
$ Item 4 (int) 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1...

Environment

> Environment %>% {
+   class(.) %>% print(.)
+   dplyr::tbl_df(.)
+ }
[1] "data.frame"
Source: local data frame [291 x 6]

       LeadPetrol       RiverSea     RadioWaste   AirPollution
           (fctr)         (fctr)         (fctr)         (fctr)
1  very concerned very concerned very concerned very concerned
2  very concerned very concerned very concerned very concerned
3  very concerned very concerned very concerned very concerned
4  very concerned very concerned very concerned very concerned
5  very concerned very concerned very concerned very concerned
6  very concerned very concerned very concerned very concerned
7  very concerned very concerned very concerned very concerned
8  very concerned very concerned very concerned very concerned
9  very concerned very concerned very concerned very concerned
10 very concerned very concerned very concerned very concerned
..            ...            ...            ...            ...
Variables not shown: Chemicals (fctr), Nuclear (fctr)

LSAT

> LSAT %>% {
+   class(.) %>% print(.)
+   dplyr::tbl_df(.)
+ }
[1] "data.frame"
Source: local data frame [1,000 x 5]

   Item 1 Item 2 Item 3 Item 4 Item 5
    (int)  (int)  (int)  (int)  (int)
1       0      0      0      0      0
2       0      0      0      0      0
3       0      0      0      0      0
4       0      0      0      0      1
5       0      0      0      0      1
6       0      0      0      0      1
7       0      0      0      0      1
8       0      0      0      0      1
9       0      0      0      0      1
10      0      0      0      1      0
..    ...    ...    ...    ...    ...
> # LSAT %>% descript() %>% plot()

descript

データフレームに対する記述統計

Arguments

  • data
  • n.print
  • chi.squared
  • B
> iris %>% descript(n.print = 3)

Descriptive statistics for the '.' data-set

Sample:
 5 items and 150 sample units; 0 missing values

Proportions for each level of response:
$Sepal.Length
   4.3    4.4    4.5    4.6    4.7    4.8    4.9      5    5.1    5.2 
0.0067 0.0200 0.0067 0.0267 0.0133 0.0333 0.0400 0.0667 0.0600 0.0267 
   5.3    5.4    5.5    5.6    5.7    5.8    5.9      6    6.1    6.2 
0.0067 0.0400 0.0467 0.0400 0.0533 0.0467 0.0200 0.0400 0.0400 0.0267 
   6.3    6.4    6.5    6.6    6.7    6.8    6.9      7    7.1    7.2 
0.0600 0.0467 0.0333 0.0133 0.0533 0.0200 0.0267 0.0067 0.0067 0.0200 
   7.3    7.4    7.6    7.7    7.9 
0.0067 0.0067 0.0067 0.0267 0.0067 

$Sepal.Width
     2    2.2    2.3    2.4    2.5    2.6    2.7    2.8    2.9      3 
0.0067 0.0200 0.0267 0.0200 0.0533 0.0333 0.0600 0.0933 0.0667 0.1733 
   3.1    3.2    3.3    3.4    3.5    3.6    3.7    3.8    3.9      4 
0.0733 0.0867 0.0400 0.0800 0.0400 0.0267 0.0200 0.0400 0.0133 0.0067 
   4.1    4.2    4.4 
0.0067 0.0067 0.0067 

$Petal.Length
     1    1.1    1.2    1.3    1.4    1.5    1.6    1.7    1.9      3 
0.0067 0.0067 0.0133 0.0467 0.0867 0.0867 0.0467 0.0267 0.0133 0.0067 
   3.3    3.5    3.6    3.7    3.8    3.9      4    4.1    4.2    4.3 
0.0133 0.0133 0.0067 0.0067 0.0067 0.0200 0.0333 0.0200 0.0267 0.0133 
   4.4    4.5    4.6    4.7    4.8    4.9      5    5.1    5.2    5.3 
0.0267 0.0533 0.0200 0.0333 0.0267 0.0333 0.0267 0.0533 0.0133 0.0133 
   5.4    5.5    5.6    5.7    5.8    5.9      6    6.1    6.3    6.4 
0.0133 0.0200 0.0400 0.0200 0.0200 0.0133 0.0133 0.0200 0.0067 0.0067 
   6.6    6.7    6.9 
0.0067 0.0133 0.0067 

$Petal.Width
   0.1    0.2    0.3    0.4    0.5    0.6      1    1.1    1.2    1.3 
0.0333 0.1933 0.0467 0.0467 0.0067 0.0067 0.0467 0.0200 0.0333 0.0867 
   1.4    1.5    1.6    1.7    1.8    1.9      2    2.1    2.2    2.3 
0.0533 0.0800 0.0267 0.0133 0.0800 0.0333 0.0400 0.0400 0.0200 0.0533 
   2.4    2.5 
0.0200 0.0200 

$Species
    setosa versicolor  virginica 
    0.3333     0.3333     0.3333 



Frequencies of total scores:
     5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
Freq 0 0 0 0 0  0  2  1  1  0  0  1  0  1  0  1  0  0  0  0  0  0  0  0  0
     30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52
Freq  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
     53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75
Freq  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
     76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98
Freq  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
     99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115
Freq  0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0
     116 117 118 119 120 121 122 123 124 125 126
Freq   0   0   0   0   0   0   0   0   0   0   0


Cronbach's alpha:
                        value
All Items              0.8166
Excluding Sepal.Length 0.7183
Excluding Sepal.Width  0.9181
Excluding Petal.Length 0.7403
Excluding Petal.Width  0.7097
Excluding Species      0.7085


Pairwise Associations:
  Item i Item j p.value
1      1      2    0.30
2      2      3    0.20
3      1      4    0.14

rcor.test

変数の組み合わせによる相関係数の計算

Arguments

  • mat
  • p.adjust
  • p.adjust.method
  • ...
> Environment %>% data.matrix() %>% rcor.test(method = "kendall")

             LeadPetrol RiverSea RadioWaste AirPollution Chemicals Nuclear
LeadPetrol    *****      0.385    0.260      0.457        0.305     0.279 
RiverSea     <0.001      *****    0.399      0.548        0.403     0.320 
RadioWaste   <0.001     <0.001    *****      0.506        0.623     0.484 
AirPollution <0.001     <0.001   <0.001      *****        0.504     0.382 
Chemicals    <0.001     <0.001   <0.001     <0.001        *****     0.463 
Nuclear      <0.001     <0.001   <0.001     <0.001       <0.001     ***** 

upper diagonal part contains correlation coefficient estimates 
lower diagonal part contains corresponding p-values
> iris %>% rcor.test()

             Sepal.Length Sepal.Width Petal.Length Petal.Width Species
Sepal.Length  *****       -0.118       0.872        0.818       0.783 
Sepal.Width   0.152        *****      -0.428       -0.366      -0.427 
Petal.Length <0.001       <0.001       *****        0.963       0.949 
Petal.Width  <0.001       <0.001      <0.001        *****       0.957 
Species      <0.001       <0.001      <0.001       <0.001       ***** 

upper diagonal part contains correlation coefficient estimates 
lower diagonal part contains corresponding p-values