mvoutlier: Multivariate outlier detection based on robust methods

ロバストな手法に基づく多変量外れ値検知

> library(mvoutlier)
Loading required package: sgeostat
sROC 0.1-2 loaded

バージョン: 2.0.8


関数名 概略
X Data (X coordinate) of illustrative example in paper (see below)
Y Data (Y coordinate) of illustrative example in paper (see below)
aq.plot Adjusted Quantile Plot
arw Adaptive reweighted estimator for multivariate location and scatter
bhorizon B-horizon of the Kola Data
bss.background Background map for the BSS project
bssbot Bottom Layer of the BSS Data
bsstop Top Layer of the BSS Data
chisq.plot Chi-Square Plot
chorizon C-horizon of the Kola Data
color.plot Color Plot
corr.plot Correlation Plot: robust versus classical bivariate correlation
dat Data of illustrative example in paper (see below)
dd.plot Distance-Distance Plot
humus Humus Layer (O-horizon) of the Kola Data
kola.background Background map for the Kola project
locoutNeighbor Diagnostic plot for identifying local outliers with varying size of neighborhood
locoutPercent Diagnostic plot for identifying local outliers with fixed size of neighborhood
locoutSort Interactive diagnostic plot for identifying local outliers
map.plot Plot Multivariate Outliers in a Map
moss Moss Layer of the Kola Data
mvoutlier.CoDa Interpreting multivatiate outliers of CoDa
pbb BSS background Plot
pcout PCOut Method for Outlier Identification in High Dimensions
pkb Kola background Plot
plot.mvoutlierCoDa Plots for interpreting multivatiate outliers of CoDa
sign1 Sign Method for Outlier Identification in High Dimensions - Simple Version
sign2 Sign Method for Outlier Identification in High Dimensions - Sophisticated Version
symbol.plot Symbol Plot
uni.plot Univariate Presentation of Multivariate Outliers