extremevalues: Detect outliers in one-dimensional data.
- CRAN: http://cran.r-project.org/web/packages/extremevalues/index.html
- GitHub: https://www.github.com/markvanderloo/extremevalues
> library(extremevalues)
バージョン: 2.3.2
関数名 | 概略 |
---|---|
dpareto |
Pareto distribution |
evGui |
GUI to explore options and results of the "extremevalues" package |
extremevalues |
An R package for outlier detection |
getOutliers |
Detect outliers |
invErf |
Inverse error function |
outlierPlot |
Plot results of outlierdetection |
dpareto / dpareto / qpareto / rpareto
パレート分布(所得の分布など)。特徴... 連続確率分布(離散型はジップ分布)
Arguments
- xm
- alpha
- x
- p
- n
> qpareto(p = 0.5)
> rpareto(n = 50)
[1] 1.630412 6.073130 1.249466 4.770578 2.811869 4.622061 2.204511
[8] 1.891774 3.512302 1.024274 1.132239 16.453988 1.413683 1.079787
[15] 2.963708 4.007436 2.118197 1.078042 1.124064 1.014918 2.557590
[22] 1.847870 4.010750 3.256358 1.443233 1.567658 1.244257 25.228261
[29] 3.741187 1.172115 1.465387 2.781005 1.578223 1.121331 1.687921
[36] 1.317454 1.850014 1.852253 1.142024 8.386982 5.381176 4.318200
[43] 5.323968 6.323954 1.097773 1.359738 6.355245 1.565745 3.028133
[50] 1.026999
getOutliers
> getOutliers(y = rpareto(n = 50))
$mu
[1] 2.322622
$sigma
[1] 1.657416
$nFit
[1] 40
$R2
[,1]
[1,] 0.8479894
$limit
Left Right
-1.081295 5.726539
$method
[1] "Method I"
$distribution
[1] "normal"
$iRight
[1] 1 2 15 36
$iLeft
integer(0)
$nOut
Left Right
0 4
$yMin
[1] 1.108513
$yMax
[1] 5.37689
$rho
Left Right
1 1
$Fmin
[1] 0.1
$Fmax
[1] 0.9
outlierPlot
外れ値のプロット
> y <- rlnorm(100)
> y <- c(0.1*min(y), y, 10 * max(y))
> K <- getOutliers(y,method = "I",distribution="lognormal")
> L <- getOutliers(y,method = "II",distribution="lognormal")
>
> par(mfrow=c(1,2))
> outlierPlot(y, K, mode = "qq")
> outlierPlot(y,L,mode="residual")