lme4: Linear Mixed-Effects Models using 'Eigen' and S4
- CRAN: http://cran.r-project.org/web/packages/lme4/index.html
- GitHub: https://github.com/lme4/lme4/
- URL: http://lme4.r-forge.r-project.org/
> library(lme4)
Loading required package: Matrix
Attaching package: 'Matrix'
The following object is masked from 'package:tidyr':
expand
バージョン: 1.1.11
関数名 | 概略 |
---|---|
.prt.methTit |
Print and Summary Method Utilities for Mixed Effects |
Arabidopsis |
Arabidopsis clipping/fertilization data |
Dyestuff |
Yield of dyestuff by batch |
GHrule |
Univariate Gauss-Hermite quadrature rule |
GQdk |
Sparse Gaussian / Gauss-Hermite Quadrature grid |
InstEval |
University Lecture/Instructor Evaluations by Students at ETH |
NelderMead-class |
Class '"NelderMead"' of Nelder-Mead optimizers and its Generator |
Nelder_Mead |
Nelder-Mead Optimization of Parameters, Possibly (Box) Constrained |
Pastes |
Paste strength by batch and cask |
Penicillin |
Variation in penicillin testing |
VarCorr |
Extract Variance and Correlation Components |
VerbAgg |
Verbal Aggression item responses |
bootMer |
Model-based (Semi-)Parametric Bootstrap for Mixed Models |
cake |
Breakage Angle of Chocolate Cakes |
cbpp |
Contagious bovine pleuropneumonia |
confint.merMod |
Compute Confidence Intervals for Parameters of a [ng]lmer Fit |
convergence |
Assessing Convergence for Fitted Models |
devcomp |
Extract the deviance component list |
drop1.merMod |
Drop all possible single fixed-effect terms from a mixed effect model |
dummy |
Dummy variables (experimental) |
expandDoubleVerts |
Expand terms with "||" notation into separate "|" terms |
factorize |
Attempt to convert grouping variables to factors |
findbars |
Determine random-effects expressions from a formula |
fixef |
Extract fixed-effects estimates |
fortify |
add information to data based on a fitted model |
getME |
Extract or Get Generalized Components from a Fitted Mixed Effects Model |
glmFamily |
Generator object for the 'glmFamily' class |
glmFamily-class |
Class '"glmFamily"' - a reference class for 'family' |
glmer |
Fitting Generalized Linear Mixed-Effects Models |
glmer.nb |
Fitting GLMM's for Negative Binomial |
glmerLaplaceHandle |
Handle for 'glmerLaplace' |
golden-class |
Class '"golden"' and Generator for Golden Search Optimizer Class |
grouseticks |
Data on red grouse ticks from Elston et al. 2001 |
hatvalues.merMod |
Diagonal elements of the hat matrix |
isNested |
Is f1 nested within f2? |
isREML |
Check characteristics of models |
lmList |
Fit List of lm Objects with a Common Model |
lmList4-class |
Class "lmList4" of 'lm' Objects on Common Model |
lmResp |
Generator objects for the response classes |
lmResp-class |
Reference Classes for Response Modules, '"(lm|glm|nls|lmer)Resp"' |
lme4-package |
Linear, generalized linear, and nonlinear mixed models |
lmer |
Fit Linear Mixed-Effects Models |
lmerControl |
Control of Mixed Model Fitting |
merMod-class |
Class "merMod" of Fitted Mixed-Effect Models |
merPredD |
Generator object for the 'merPredD' class |
merPredD-class |
Class '"merPredD"' - a Dense Predictor Reference Class |
mkMerMod |
Create a 'merMod' Object |
mkParsTemplate |
Make templates suitable for guiding mixed model simulations |
mkReTrms |
Make Random Effect Terms: Create Z, Lambda, Lind, etc. |
mkRespMod |
Create an lmerResp, glmResp or nlsResp instance |
mkVarCorr |
Make Variance and Correlation Matrices from 'theta' |
mkdevfun |
Create Deviance Evaluation Function from Predictor and Response Module |
modular |
Modular Functions for Mixed Model Fits |
ngrps |
Number of Levels of a Factor or a "merMod" Model |
nlformula |
Manipulate a Nonlinear Model Formula |
nlmer |
Fitting Nonlinear Mixed-Effects Models |
nloptwrap |
Wrappers for additional optimizers |
nobars |
Omit terms separated by vertical bars in a formula |
plot.lmList4 |
plots for lmList4 objects |
plot.merMod |
diagnostic plots for merMod fits |
predict.merMod |
Predictions from a model at new data values |
profile-methods |
Profile method for merMod objects |
pvalues |
Getting p-values for fitted models |
ranef |
Extract the modes of the random effects |
rePos |
Generator object for the rePos (random-effects positions) class |
rePos-class |
Class '"rePos"' |
refit |
Refit a (merMod) Model with a Different Response |
refitML |
Refit a Model by Maximum Likelihood Criterion |
residuals.merMod |
residuals of merMod objects |
sigma |
Extract Residual Standard Deviation 'Sigma' |
simulate.merMod |
Simulate Responses From 'merMod' Object |
sleepstudy |
Reaction times in a sleep deprivation study subbars "Sub[stitute] Bars" |
troubleshooting |
Troubleshooting |
varianceProf |
Transform Profile to the variance scale |
vcconv |
Convert between representations of (co-)variance structures |
xyplot.thpr |
Mixed-Effects Profile Plots (Regular / Density / Pairs) |
fixef
固定効果の抽出
> sleepstudy %>% lmer(Reaction ~ Days + (1 | Subject), data = .) %>%
+ fixef()
(Intercept) Days
251.40510 10.46729
lmer
混合効果モデルによる推定
Arguments
- formula... ランダム効果とする変数は
(|)
で囲む - data
- REML
- control
- start
- verbose
- subset
- weights
- na.action
- offset
- contrasts
- devFunOnly
- ...
> (fit <- sleepstudy %>% lmer(Reaction ~ Days + (Days | Subject), data = .))
Linear mixed model fit by REML ['lmerMod']
Formula: Reaction ~ Days + (Days | Subject)
Data: .
REML criterion at convergence: 1743.628
Random effects:
Groups Name Std.Dev. Corr
Subject (Intercept) 24.740
Days 5.922 0.07
Residual 25.592
Number of obs: 180, groups: Subject, 18
Fixed Effects:
(Intercept) Days
251.41 10.47
> summary(fit)
Linear mixed model fit by REML ['lmerMod']
Formula: Reaction ~ Days + (Days | Subject)
Data: .
REML criterion at convergence: 1743.6
Scaled residuals:
Min 1Q Median 3Q Max
-3.9536 -0.4634 0.0231 0.4634 5.1793
Random effects:
Groups Name Variance Std.Dev. Corr
Subject (Intercept) 612.09 24.740
Days 35.07 5.922 0.07
Residual 654.94 25.592
Number of obs: 180, groups: Subject, 18
Fixed effects:
Estimate Std. Error t value
(Intercept) 251.405 6.825 36.84
Days 10.467 1.546 6.77
Correlation of Fixed Effects:
(Intr)
Days -0.138
> fit %>% terms() %>% str()
Classes 'terms', 'formula' length 3 Reaction ~ Days
..- attr(*, "variables")= language list(Reaction, Days)
..- attr(*, "factors")= int [1:2, 1] 0 1
.. ..- attr(*, "dimnames")=List of 2
.. .. ..$ : chr [1:2] "Reaction" "Days"
.. .. ..$ : chr "Days"
..- attr(*, "term.labels")= chr "Days"
..- attr(*, "order")= int 1
..- attr(*, "intercept")= int 1
..- attr(*, "response")= int 1
..- attr(*, ".Environment")=<environment: 0x11c31e118>
..- attr(*, "predvars")= language list(Reaction, Days)
ranef
混合効果モデルからランダム効果の表示
> sleepstudy %>% lmer(Reaction ~ Days + (Days | Subject), data = .) %>%
+ ranef()
$Subject
(Intercept) Days
308 2.2585637 9.1989722
309 -40.3985802 -8.6197026
310 -38.9602496 -5.4488792
330 23.6905025 -4.8143320
331 22.2602062 -3.0698952
332 9.0395271 -0.2721709
333 16.8404333 -0.2236248
334 -7.2325803 1.0745763
335 -0.3336936 -10.7521594
337 34.8903534 8.6282835
349 -25.2101138 1.1734148
350 -13.0699598 6.6142055
351 4.5778364 -3.0152574
352 20.8635944 3.5360130
369 3.2754532 0.8722166
370 -25.6128737 4.8224653
371 0.8070401 -0.9881551
372 12.3145406 1.2840295
sleepstudy
> sleepstudy %>% {
+ print(class(.))
+ print(dplyr::glimpse(.))
+ }
[1] "data.frame"
Observations: 180
Variables: 3
$ Reaction (dbl) 249.5600, 258.7047, 250.8006, 321.4398, 356.8519, 414...
$ Days (dbl) 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 1, 2, 3, 4, 5, 6, 7,...
$ Subject (fctr) 308, 308, 308, 308, 308, 308, 308, 308, 308, 308, 30...
NULL