mgcv: Mixed GAM Computation Vehicle with GCV/AIC/REML Smoothness Estimation
一般化加法モデル
> library(mgcv)
Loading required package: nlme
Attaching package: 'nlme'
The following object is masked from 'package:raster':
getData
The following object is masked from 'package:HistData':
Wheat
The following objects are masked from 'package:unmarked':
getData, ranef
This is mgcv 1.8-11. For overview type 'help("mgcv-package")'.
バージョン: 1.8.11
関数名 | 概略 |
---|---|
Predict.matrix |
Prediction methods for smooth terms in a GAM |
Predict.matrix.cr.smooth |
Predict matrix method functions |
Predict.matrix.soap.film |
Prediction matrix for soap film smooth |
Rrank |
Find rank of upper triangular matrix |
Tweedie |
GAM Tweedie families |
anova.gam |
Approximate hypothesis tests related to GAM fits |
bam |
Generalized additive models for very large datasets |
bam.update |
Update a strictly additive bam model for new data. |
betar |
GAM beta regression family |
cSplineDes |
Evaluate cyclic B spline basis |
choose.k |
Basis dimension choice for smooths |
columb |
Reduced version of Columbus OH crime data |
concurvity |
GAM concurvity measures |
cox.ph |
Additive Cox Proportional Hazard Model |
exclude.too.far |
Exclude prediction grid points too far from data |
extract.lme.cov |
Extract the data covariance matrix from an lme object |
family.mgcv |
Distribution families in mgcv |
fix.family.link |
Modify families for use in GAM fitting and checking |
fixDependence |
Detect linear dependencies of one matrix on another |
formXtViX |
Form component of GAMM covariance matrix |
formula.gam |
GAM formula |
fs.test |
FELSPLINE test function |
full.score |
GCV/UBRE score for use within nlm |
gam |
Generalized additive models with integrated smoothness estimation |
gam.check |
Some diagnostics for a fitted gam model |
gam.control |
Setting GAM fitting defaults |
gam.convergence |
GAM convergence and performance issues |
gam.fit |
GAM P-IRLS estimation with GCV/UBRE smoothness estimation |
gam.fit3 |
P-IRLS GAM estimation with GCV & UBRE/AIC or RE/ML derivative calculation |
gam.models |
Specifying generalized additive models |
gam.outer |
Minimize GCV or UBRE score of a GAM using 'outer' iteration |
gam.scale |
Scale parameter estimation in GAMs |
gam.selection |
Generalized Additive Model Selection |
gam.side |
Identifiability side conditions for a GAM |
gam.vcomp |
Report gam smoothness estimates as variance components |
gam2objective |
Objective functions for GAM smoothing parameter estimation |
gamObject |
Fitted gam object |
gamSim |
Simulate example data for GAMs |
gamm |
Generalized Additive Mixed Models |
gaulss |
Gaussian location-scale model family |
get.var |
Get named variable or evaluate expression from list or data.frame |
in.out |
Which of a set of points lie within a polygon defined region |
inSide |
Are points inside boundary? |
influence.gam |
Extract the diagonal of the influence/hat matrix for a GAM |
initial.sp |
Starting values for multiple smoothing parameter estimation |
interpret.gam |
Interpret a GAM formula |
jaga |
m Just Another Gibbs Additive Modeller: JAGS support for mgcv. |
ldTweedie |
Log Tweedie density evaluation |
linear.functional.terms |
Linear functionals of a smooth in GAMs |
logLik.gam |
Log likelihood for a fitted GAM, for AIC |
ls.size |
Size of list elements |
magic |
Stable Multiple Smoothing Parameter Estimation by GCV or UBRE |
magic.post.proc |
Auxilliary information from magic fit |
mgcv.FAQ |
Frequently Asked Questions for package mgcv |
mgcv.package |
Mixed GAM Computation Vehicle with GCV/AIC/REML |
smoothness |
estimation and GAMMs by REML/PQL |
mgcv.parallel |
Parallel computation in mgcv. |
model.matrix.gam |
Extract model matrix from GAM fit |
mono.con |
Monotonicity constraints for a cubic regression spline |
mroot |
Smallest square root of matrix |
mvn |
Multivariate normal additive models |
negbin |
GAM negative binomial families |
new.name |
Obtain a name for a new variable that is not already in use |
notExp |
Functions for better-than-log positive parameterization |
notExp2 |
Alternative to log parameterization for variance components |
null.space.dimension |
The basis of the space of un-penalized functions for a TPRS |
ocat |
GAM ordered categorical family |
pcls |
Penalized Constrained Least Squares Fitting |
pdIdnot |
Overflow proof pdMat class for multiples of the identity matrix |
pdTens |
Functions implementing a pdMat class for tensor product smooths |
pen.edf |
Extract the effective degrees of freedom associated with each penalty in a gam fit |
place.knots |
Automatically place a set of knots evenly through covariate values |
plot.gam |
Default GAM plotting |
polys.plot |
Plot geographic regions defined as polygons |
predict.bam |
Prediction from fitted Big Additive Model model |
predict.gam |
Prediction from fitted GAM model |
print.gam |
Print a Generalized Additive Model object. |
qq.gam |
QQ plots for gam model residuals |
rTweedie |
Generate Tweedie random deviates |
random.effects |
Random effects in GAMs |
residuals.gam |
Generalized Additive Model residuals |
rig |
Generate inverse Gaussian random deviates |
rmvn |
Generate multivariate normal deviates |
s |
Defining smooths in GAM formulae |
scat |
GAM scaled t family for heavy tailed data |
single.index |
Single index models with mgcv |
slanczos |
Compute truncated eigen decomposition of a symmetric matrix |
smooth.construct |
Constructor functions for smooth terms in a GAM |
smooth.construct.ad.smooth.spec |
Adaptive smooths in GAMs |
smooth.construct.cr.smooth.spec |
Penalized Cubic regression splines in GAMs |
smooth.construct.ds.smooth.spec |
Low rank Duchon 1977 splines |
smooth.construct.fs.smooth.spec |
Factor smooth interactions in GAMs |
smooth.construct.mrf.smooth.spec |
Markov Random Field Smooths |
smooth.construct.ps.smooth.spec |
P-splines in GAMs |
smooth.construct.re.smooth.spec |
Simple random effects in GAMs |
smooth.construct.so.smooth.spec |
Soap film smoother constructer |
smooth.construct.sos.smooth.spec |
Splines on the sphere |
smooth.construct.t2.smooth.spec |
Tensor product smoothing constructor |
smooth.construct.tensor.smooth.spec |
Tensor product smoothing constructor |
smooth.construct.tp.smooth.spec |
Penalized thin plate regression splines in GAMs |
smooth.terms |
Smooth terms in GAM |
smoothCon |
Prediction/Construction wrapper functions for GAM smooth terms |
sp.vcov |
Extract smoothing parameter estimator |
covariance |
matrix from (RE)ML GAM fit |
spasm.construct |
Experimental sparse smoothers |
step.gam |
Alternatives to step.gam |
summary.gam |
Summary for a GAM fit |
t2 |
Define alternative tensor product smooths in GAM formulae |
te |
Define tensor product smooths or tensor product interactions in GAM formulae |
tensor.prod.model.matrix |
Utility functions for constructing tensor product smooths |
uniquecombs |
find the unique rows in a matrix |
vcov.gam |
Extract parameter (estimator) covariance matrix from GAM fit |
vis.gam |
Visualization of GAM objects |
ziP |
GAM zero-inflated Poisson regression family |
ziplss |
Zero inflated Poisson location-scale model family |
bam
> set.seed(71)
> dat <- gamSim(1,n = 25000, dist = "normal", scale = 20)
Gu & Wahba 4 term additive model
> bs <- "cr"
> k <- 12
> b <- bam(y ~ s(x0, bs = bs) + s(x1, bs = bs) + s(x2, bs = bs, k = k) + s(x3, bs = bs), data = dat)
> summary(b)
Family: gaussian
Link function: identity
Formula:
y ~ s(x0, bs = bs) + s(x1, bs = bs) + s(x2, bs = bs, k = k) +
s(x3, bs = bs)
Parametric coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 7.8886 0.1258 62.69 <2e-16
Approximate significance of smooth terms:
edf Ref.df F p-value
s(x0) 3.337 4.133 7.937 0.00000173
s(x1) 2.997 3.723 64.488 < 2e-16
s(x2) 8.528 9.830 49.003 < 2e-16
s(x3) 1.001 1.002 2.164 0.141
R-sq.(adj) = 0.0288 Deviance explained = 2.95%
fREML = 1.1024e+05 Scale est. = 395.61 n = 25000
> # plot(b,pages = 1, rug = FALSE)
> # plot(b, pages = 1, rug = FALSE, seWithMean = TRUE)
gam
一般化加法モデルの当てはめ
> set.seed(71)
> dat <- gamSim(1, n = 400, dist = "normal", scale = 2)
Gu & Wahba 4 term additive model
> b <- gam(y ~ s(x0) + s(x1) + s(x2) + s(x3), data = dat)
>
> summary(b)
Family: gaussian
Link function: identity
Formula:
y ~ s(x0) + s(x1) + s(x2) + s(x3)
Parametric coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 8.0896 0.1024 79.04 <2e-16
Approximate significance of smooth terms:
edf Ref.df F p-value
s(x0) 2.809 3.484 7.614 0.0000275
s(x1) 4.147 5.109 59.572 < 2e-16
s(x2) 8.292 8.862 87.113 < 2e-16
s(x3) 1.000 1.000 0.045 0.833
R-sq.(adj) = 0.739 Deviance explained = 75%
GCV = 4.3792 Scale est. = 4.1904 n = 400
gamm
一般化加法混合モデルの当てはめ
> # 模擬データの作成
> set.seed(71)
> dat <- gamSim(1, n = 200, scale = 2)
Gu & Wahba 4 term additive model
> b <- gamm(y ~ s(x0) + s(x1) + s(x2) + s(x3), data = dat)
> # plot(b$gam, pages = 1)
gamSim
一般化加法モデルシュミレーションのための模擬データ作成
Arguments
- eg
- n
- dist
- scale
- verbose
> dat <- gamSim(eg = 1, n = 400, dist = "normal", scale = 2, verbose = TRUE)
Gu & Wahba 4 term additive model
> dat %>% {
+ class(.) %>% print()
+ dplyr::glimpse(.)
+ }
[1] "data.frame"
Observations: 400
Variables: 10
$ y (dbl) 17.554394, 6.939046, 5.624183, 5.475619, 4.632405, 9.826478...
$ x0 (dbl) 0.95100575, 0.95934235, 0.48664203, 0.10584845, 0.84856293,...
$ x1 (dbl) 0.98435759, 0.68927643, 0.19723711, 0.44315047, 0.01160870,...
$ x2 (dbl) 0.2123473, 0.4258419, 0.7573317, 0.6468084, 0.9267621, 0.39...
$ x3 (dbl) 0.687140832, 0.151121247, 0.372815891, 0.669982044, 0.00448...
$ f (dbl) 16.270092, 7.828756, 5.404719, 6.379038, 1.952875, 10.79401...
$ f0 (dbl) 0.30662586, 0.25476549, 1.99823917, 0.65287611, 0.91601697,...
$ f1 (dbl) 7.161469, 3.969154, 1.483604, 2.426139, 1.023489, 5.804703,...
$ f2 (dbl) 8.8019967445, 3.6048370549, 1.9228759380, 3.3000230948, 0.0...
$ f3 (dbl) 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,...
ls.size
リストの各要素についての大きさを返す
> list(M = matrix(runif(100), 10, 10),
+ quote = "The world is ruled by idiots because only an idiot would want to rule the world.",
+ fam = binomial()) %>% ls.size()
M quote fam
1000 216 133800
s
平滑化関数の定義
> s(..., k=-1,fx=FALSE,bs="tp",m=NA,by=NA,xt=NULL,id=NULL,sp=NULL)