capm: Companion Animal Population Management

> library(capm)
> data("psu.ssu")
> data("survey.data")

バージョン: 0.9.1


関数名 概略
Calculate2StageSampleSize Two-stage cluster sampling size and composition
CalculateGlobalSens Global sensitivity analysis
CalculateLocalSens Local sensitivity analysis
CalculatePopChange Population change.
CalculateSimpleSampleSize Simple random sample size
CalculateStratifiedSampleSize Stratified random sample size
DesignSurvey Survey design
GraphicInterface Graphic interface to use some capm functions
MapkmlPSU Creates *.kml files of a subset of polygons from a polygon shapefile
PlotGlobalSens Plot results of GlobalSens function
PlotLocalSens Plot results of CalculateLocalSens function
PlotModels Plot results of capm model functions
PlotPopPyramid Population PlotPopPyramid
SamplePPS Probability proportional to size sampling with replacement
SampleSystematic Simple and stratified systematic sampling
SetRanges Parameter ranges for global sensitivity analysis
SolveIASA Modelling of immigration, abandonment, sterilization and adoption of companion animals
SolveSI Modelling of sterilization and immigration of comapnion animals.
SolveTC Modelling of reversible contraception for companion animals
SummarySurvey Summary statistics for sample surveys capm-package The capm Package
pilot Pilot study to calculate sample size and composition
psu.ssu Primary and secondary sampling frames from Santos, Brazil.
survey.data Estimates of dog demographic variables

DesignSurvey

> DesignSurvey(sample = survey.data, 
+              psu.ssu = psu.ssu,
+              psu.col = 2, 
+              ssu.col = 1, 
+              psu.2cd = 20)
2 - level Cluster Sampling design
With (20, 380) clusters.
svydesign(ids = ~psu.id + ssu.id, fpc = ~pop.size + psu.size, 
    weights = ~weights, data = sample, ...)

pilot

> data("pilot")
> pilot %>% dplyr::glimpse()
Observations: 100
Variables: 2
$ psu  (fctr) 354850005000377, 354850005000377, 354850005000377, 35485...
$ dogs (int) 1, 0, 0, 0, 2, 0, 1, 2, 2, 0, 1, 0, 0, 3, 0, 1, 3, 1, 3, ...

psu.ssu

> data("psu.ssu")
> psu.ssu %>% dplyr::glimpse()
Observations: 652
Variables: 2
$ psu (dbl) 354850005000001, 354850005000002, 354850005000003, 3548500...
$ ssu (int) 119, 43, 79, 129, 53, 46, 176, 281, 409, 317, 238, 120, 11...

survey.data

> data("survey.data")
> survey.data %>% dplyr::glimpse()
Observations: 469
Variables: 16
$ interview_id            (int) 1, 1, 2, 3, 4, 5, 5, 6, 7, 8, 9, 9, 10...
$ psu                     (dbl) 354850005000114, 354850005000114, 3548...
$ dogs                    (dbl) 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0,...
$ sex                     (fctr) Male, Female, Female, Male, Female, F...
$ age                     (int) 9, 1, 7, 11, 13, 3, 8, NA, 7, 0, 4, 2,...
$ sterilized              (fctr) yes, no, yes, no, no, no, no, NA, no,...
$ sterilized.ly           (fctr) yes, no, no, no, no, no, no, NA, no, ...
$ births                  (dbl) 0, 0, 0, 0, 0, 0, 0, NA, 0, 0, 0, 0, N...
$ present                 (fctr) yes, yes, yes, yes, yes, yes, yes, NA...
$ fate                    (fctr) in_home, in_home, in_home, in_home, i...
$ acquired                (fctr) bought, bought, bought, born_in_home,...
$ outside                 (fctr) no, no, no, no, yes, no, no, NA, no, ...
$ acquired.ly             (fctr) no, yes, yes, no, no, yes, no, NA, ye...
$ immigrant               (fctr) yes, yes, yes, no, yes, no, no, NA, n...
$ immigrant.ly            (fctr) no, yes, yes, no, no, no, no, NA, no,...
$ immigrant.sterilized.ly (fctr) no, no, no, no, no, no, no, NA, no, n...