datasets: The R Datasets Package

Rデータセットパッケージ

> library(datasets)

バージョン: 3.2.3


関数名 概略
AirPassengers Monthly Airline Passenger Numbers 1949-1960
BJsales Sales Data with Leading Indicator
BOD Biochemical Oxygen Demand
CO2 Carbon Dioxide Uptake in Grass Plants
ChickWeight Weight versus age of chicks on different diets
DNase Elisa assay of DNase
EuStockMarkets Daily Closing Prices of Major European Stock Indices, 1991-1998
Formaldehyde Determination of Formaldehyde
HairEyeColor Hair and Eye Color of Statistics Students
Harman23.cor Harman Example 2.3
Harman74.cor Harman Example 7.4
Indometh Pharmacokinetics of Indomethacin
InsectSprays Effectiveness of Insect Sprays
JohnsonJohnson Quarterly Earnings per Johnson & Johnson Share
LakeHuron Level of Lake Huron 1875-1972
LifeCycleSavings Intercountry Life-Cycle Savings Data
Loblolly Growth of Loblolly pine trees
Nile Flow of the River Nile
Orange Growth of Orange Trees
OrchardSprays Potency of Orchard Sprays
PlantGrowth Results from an Experiment on Plant Growth
Puromycin Reaction Velocity of an Enzymatic Reaction
Theoph Pharmacokinetics of Theophylline
Titanic Survival of passengers on the Titanic
ToothGrowth The Effect of Vitamin C on Tooth Growth in Guinea Pigs
UCBAdmissions Student Admissions at UC Berkeley
UKDriverDeaths Road Casualties in Great Britain 1969-84
UKLungDeaths Monthly Deaths from Lung Diseases in the UK
UKgas UK Quarterly Gas Consumption
USAccDeaths Accidental Deaths in the US 1973-1978
USArrests Violent Crime Rates by US State
USJudgeRatings Lawyers' Ratings of State Judges in the US Superior Court
USPersonalExpenditure Personal Expenditure Data
VADeaths Death Rates in Virginia (1940)
WWWusage Internet Usage per Minute
WorldPhones The World's Telephones
ability.cov Ability and Intelligence Tests
airmiles Passenger Miles on Commercial US Airlines, 1937-1960
airquality New York Air Quality Measurements
anscombe Anscombe's Quartet of 'Identical' Simple Linear Regressions
attenu The Joyner-Boore Attenuation Data
attitude The Chatterjee-Price Attitude Data
austres Quarterly Time Series of the Number of Australian Residents
beavers Body Temperature Series of Two Beavers
cars Speed and Stopping Distances of Cars
chickwts Chicken Weights by Feed Type
co2 Mauna Loa Atmospheric CO2 Concentration
crimtab Student's 3000 Criminals Data
datasets-package The R Datasets Package
discoveries Yearly Numbers of Important Discoveries
esoph Smoking, Alcohol and (O)esophageal Cancer
euro Conversion Rates of Euro Currencies
eurodist Distances Between European Cities and Between US Cities
faithful Old Faithful Geyser Data
freeny Freeny's Revenue Data
infert Infertility after Spontaneous and Induced Abortion
iris Edgar Anderson's Iris Data
islands Areas of the World's Major Landmasses
lh Luteinizing Hormone in Blood Samples
longley Longley's Economic Regression Data
lynx Annual Canadian Lynx trappings 1821-1934
morley Michelson Speed of Light Data
mtcars Motor Trend Car Road Tests
nhtemp Average Yearly Temperatures in New Haven
nottem Average Monthly Temperatures at Nottingham, 1920-1939
npk Classical N, P, K Factorial Experiment
occupationalStatus Occupational Status of Fathers and their Sons
precip Annual Precipitation in US Cities
presidents Quarterly Approval Ratings of US Presidents
pressure Vapor Pressure of Mercury as a Function of Temperature
quakes Locations of Earthquakes off Fiji
randu Random Numbers from Congruential Generator RANDU
rivers Lengths of Major North American Rivers
rock Measurements on Petroleum Rock Samples
sleep Student's Sleep Data
stackloss Brownlee's Stack Loss Plant Data
state US State Facts and Figures
sunspot.month Monthly Sunspot Data, from 1749 to "Present"
sunspot.year Yearly Sunspot Data, 1700-1988
sunspots Monthly Sunspot Numbers, 1749-1983
swiss Swiss Fertility and Socioeconomic Indicators (1888) Data
treering Yearly Treering Data, -6000-1979
trees Girth, Height and Volume for Black Cherry Trees
uspop Populations Recorded by the US Census
volcano Topographic Information on Auckland's Maunga Whau Volcano
warpbreaks The Number of Breaks in Yarn during Weaving
women Average Heights and Weights for American Women

AirPassengers

1949年から1960年にかけての月間飛行機旅客

> AirPassengers %>% {
+   class(.) %>% print()
+   str(.)
+ }
[1] "ts"
 Time-Series [1:144] from 1949 to 1961: 112 118 132 129 121 135 148 148 136 119 ...

BJsales

主要経済の売上データ

> BJsales %>% {
+   class(.) %>% print()
+   str(.)
+ }
[1] "ts"
 Time-Series [1:150] from 1 to 150: 200 200 199 199 199 ...

BOD

> BOD %>% {
+   class(.) %>% print()
+   dplyr::glimpse(.)
+ }
[1] "data.frame"
Observations: 6
Variables: 2
$ Time   (dbl) 1, 2, 3, 4, 5, 7
$ demand (dbl) 8.3, 10.3, 19.0, 16.0, 15.6, 19.8

CO2

> CO2 %>% {
+   class(.) %>% print()
+   dplyr::glimpse(.)
+ }
[1] "nfnGroupedData" "nfGroupedData"  "groupedData"    "data.frame"    
Observations: 84
Variables: 5
$ Plant     (fctr) Qn1, Qn1, Qn1, Qn1, Qn1, Qn1, Qn1, Qn2, Qn2, Qn2, Q...
$ Type      (fctr) Quebec, Quebec, Quebec, Quebec, Quebec, Quebec, Que...
$ Treatment (fctr) nonchilled, nonchilled, nonchilled, nonchilled, non...
$ conc      (dbl) 95, 175, 250, 350, 500, 675, 1000, 95, 175, 250, 350...
$ uptake    (dbl) 16.0, 30.4, 34.8, 37.2, 35.3, 39.2, 39.7, 13.6, 27.3...

ChickWeight

> ChickWeight %>% {
+   class(.) %>% print()
+   dplyr::glimpse(.)
+ }
[1] "nfnGroupedData" "nfGroupedData"  "groupedData"    "data.frame"    
Observations: 578
Variables: 4
$ weight (dbl) 42, 51, 59, 64, 76, 93, 106, 125, 149, 171, 199, 205, 4...
$ Time   (dbl) 0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 21, 0, 2, 4, 6, ...
$ Chick  (fctr) 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, ...
$ Diet   (fctr) 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...

DNase

> DNase %>% {
+   class(.) %>% print()
+   dplyr::glimpse(.)
+ }
[1] "nfnGroupedData" "nfGroupedData"  "groupedData"    "data.frame"    
Observations: 176
Variables: 3
$ Run     (fctr) 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2,...
$ conc    (dbl) 0.04882812, 0.04882812, 0.19531250, 0.19531250, 0.3906...
$ density (dbl) 0.017, 0.018, 0.121, 0.124, 0.206, 0.215, 0.377, 0.374...

EuStockMarkets

> EuStockMarkets %>% {
+   class(.) %>% print()
+   dplyr::glimpse(.)
+ }
[1] "mts"    "ts"     "matrix"
 mts [1:1860, 1:4] 1629 1614 1607 1621 1618 ...
 - attr(*, "dimnames")=List of 2
  ..$ : NULL
  ..$ : chr [1:4] "DAX" "SMI" "CAC" "FTSE"
 - attr(*, "tsp")= num [1:3] 1991 1999 260
 - attr(*, "class")= chr [1:3] "mts" "ts" "matrix"

Formaldehyde

> Formaldehyde %>% {
+   class(.) %>% print()
+   dplyr::glimpse(.)
+ }
[1] "data.frame"
Observations: 6
Variables: 2
$ carb   (dbl) 0.1, 0.3, 0.5, 0.6, 0.7, 0.9
$ optden (dbl) 0.086, 0.269, 0.446, 0.538, 0.626, 0.782

HairEyeColor

> HairEyeColor %>% {
+   class(.) %>% print()
+   str(.)
+ }
[1] "table"
 table [1:4, 1:4, 1:2] 32 53 10 3 11 50 10 30 10 25 ...
 - attr(*, "dimnames")=List of 3
  ..$ Hair: chr [1:4] "Black" "Brown" "Red" "Blond"
  ..$ Eye : chr [1:4] "Brown" "Blue" "Hazel" "Green"
  ..$ Sex : chr [1:2] "Male" "Female"

Harman23.cor

> Harman23.cor %>% {
+   class(.) %>% print()
+   str(.)
+ }
[1] "list"
List of 3
 $ cov   : num [1:8, 1:8] 1 0.846 0.805 0.859 0.473 0.398 0.301 0.382 0.846 1 ...
  ..- attr(*, "dimnames")=List of 2
  .. ..$ : chr [1:8] "height" "arm.span" "forearm" "lower.leg" ...
  .. ..$ : chr [1:8] "height" "arm.span" "forearm" "lower.leg" ...
 $ center: num [1:8] 0 0 0 0 0 0 0 0
 $ n.obs : num 305

LakeHuron

1875年から1972年のHuron湖の年間水位

> LakeHuron %>% {
+   class(.) %>% print()
+   str(.)
+ }
[1] "ts"
 Time-Series [1:98] from 1875 to 1972: 580 582 581 581 580 ...

Nile

ナイル川の水量

> Nile %>% {
+   class(.) %>% print()
+   str(.)
+ }
[1] "ts"
 Time-Series [1:100] from 1871 to 1970: 1120 1160 963 1210 1160 1160 813 1230 1370 1140 ...

Orange

> Orange %>% {
+   class(.) %>% print()
+   dplyr::tbl_df(.)
+ }
[1] "nfnGroupedData" "nfGroupedData"  "groupedData"    "data.frame"
Source: local data frame [35 x 3]

     Tree   age circumference
   (fctr) (dbl)         (dbl)
1       1   118            30
2       1   484            58
3       1   664            87
4       1  1004           115
5       1  1231           120
6       1  1372           142
7       1  1582           145
8       2   118            33
9       2   484            69
10      2   664           111
..    ...   ...           ...

PlantGrowth

> PlantGrowth %>% {
+   class(.) %>% print()
+   dplyr::tbl_df(.)
+ }
[1] "data.frame"
Source: local data frame [30 x 2]

   weight  group
    (dbl) (fctr)
1    4.17   ctrl
2    5.58   ctrl
3    5.18   ctrl
4    6.11   ctrl
5    4.50   ctrl
6    4.61   ctrl
7    5.17   ctrl
8    4.53   ctrl
9    5.33   ctrl
10   5.14   ctrl
..    ...    ...

UKDriverDeaths

> UKDriverDeaths %>% {
+   class(.) %>% print()
+   str(.)
+ }
[1] "ts"
 Time-Series [1:192] from 1969 to 1985: 1687 1508 1507 1385 1632 ...

WWWusage

インターネット利用者

> WWWusage %>% {
+   class(.) %>% print()
+   str(.)
+ }
[1] "ts"
 Time-Series [1:100] from 1 to 100: 88 84 85 85 84 85 83 85 88 89 ...

airquality

> airquality %>% {
+   print(class(.))
+   dplyr::tbl_df(.)
+ }
[1] "data.frame"
Source: local data frame [153 x 6]

   Ozone Solar.R  Wind  Temp Month   Day
   (int)   (int) (dbl) (int) (int) (int)
1     41     190   7.4    67     5     1
2     36     118   8.0    72     5     2
3     12     149  12.6    74     5     3
4     18     313  11.5    62     5     4
5     NA      NA  14.3    56     5     5
6     28      NA  14.9    66     5     6
7     23     299   8.6    65     5     7
8     19      99  13.8    59     5     8
9      8      19  20.1    61     5     9
10    NA     194   8.6    69     5    10
..   ...     ...   ...   ...   ...   ...

austres

> austres %>% {
+   class(.) %>% print()
+   str(.)
+ }
[1] "ts"
 Time-Series [1:89] from 1971 to 1993: 13067 13130 13198 13254 13304 ...

lh

> lh %>% {
+   class(.) %>% print()
+   str(.)
+ }
[1] "ts"
 Time-Series [1:48] from 1 to 48: 2.4 2.4 2.4 2.2 2.1 1.5 2.3 2.3 2.5 2 ...

Loblolly

> Loblolly %>% {
+   print(class(.))
+   dplyr::tbl_df(.)
+ }
[1] "nfnGroupedData" "nfGroupedData"  "groupedData"    "data.frame"
Source: local data frame [84 x 3]

   height   age   Seed
    (dbl) (dbl) (fctr)
1    4.51     3    301
2   10.89     5    301
3   28.72    10    301
4   41.74    15    301
5   52.70    20    301
6   60.92    25    301
7    4.55     3    303
8   10.92     5    303
9   29.07    10    303
10  42.83    15    303
..    ...   ...    ...

lynx

> lynx %>% {
+   class(.) %>% print()
+   str(.)
+ }
[1] "ts"
 Time-Series [1:114] from 1821 to 1934: 269 321 585 871 1475 ...

nhtemp

> nhtemp %>% {
+   class(.) %>% print()
+   str(.)
+ }
[1] "ts"
 Time-Series [1:60] from 1912 to 1971: 49.9 52.3 49.4 51.1 49.4 47.9 49.8 50.9 49.3 51.9 ...

nottem

> nottem %>% {
+   class(.) %>% print()
+   str(.)
+ }
[1] "ts"
 Time-Series [1:240] from 1920 to 1940: 40.6 40.8 44.4 46.7 54.1 58.5 57.7 56.4 54.3 50.5 ...

presidents

アメリカ合衆国大統領の3ヶ月おきの支持率

> presidents %>% {
+   class(.) %>% print()
+   str(.)
+ }
[1] "ts"
 Time-Series [1:120] from 1945 to 1975: NA 87 82 75 63 50 43 32 35 60 ...

sunspot.month

> sunspot.month %>% {
+   class(.) %>% print()
+   str(.)
+ }
[1] "ts"
 Time-Series [1:3177] from 1749 to 2014: 58 62.6 70 55.7 85 83.5 94.8 66.3 75.9 75.5 ...

sunspot.year

> sunspot.year %>% {
+   class(.) %>% print()
+   str(.)
+ }
[1] "ts"
 Time-Series [1:289] from 1700 to 1988: 5 11 16 23 36 58 29 20 10 8 ...

sunspots

> sunspots %>% {
+   class(.) %>% print()
+   str(.)
+ }
[1] "ts"
 Time-Series [1:2820] from 1749 to 1984: 58 62.6 70 55.7 85 83.5 94.8 66.3 75.9 75.5 ...

treering

> treering %>% {
+   class(.) %>% print()
+   str(.)
+ }
[1] "ts"
 Time-Series [1:7980] from -6000 to 1979: 1.34 1.08 1.54 1.32 1.41 ...

UKgas

> UKgas %>% {
+   class(.) %>% print()
+   str(.)
+ }
[1] "ts"
 Time-Series [1:108] from 1960 to 1987: 160.1 129.7 84.8 120.1 160.1 ...

warpbreaks

> warpbreaks %>% {
+   class(.) %>% print()
+   dplyr::glimpse(.)
+ }
[1] "data.frame"
Observations: 54
Variables: 3
$ breaks  (dbl) 26, 30, 54, 25, 70, 52, 51, 26, 67, 18, 21, 29, 17, 12...
$ wool    (fctr) A, A, A, A, A, A, A, A, A, A, A, A, A, A, A, A, A, A,...
$ tension (fctr) L, L, L, L, L, L, L, L, L, M, M, M, M, M, M, M, M, M,...