coda: Output Analysis and Diagnostics for MCMC
MCMCモデリングの結果を解析する(収束判定)ためのツール
> library(coda)
バージョン: 0.18.1
関数名 | 概略 |
---|---|
as.matrix.mcmc |
Conversions of MCMC objects |
as.ts.mcmc |
Coerce mcmc object to time series |
autocorr |
Autocorrelation function for Markov chains |
autocorr.diag |
Autocorrelation function for Markov chains |
autocorr.plot |
Plot autocorrelations for Markov Chains |
batchSE |
Batch Standard Error |
bugs2jags |
Convert WinBUGS data file to JAGS data file |
codamenu |
Main menu driver for the coda package |
coda.options |
Options settings for the codamenu driver |
crosscorr |
Cross correlations for MCMC output |
crosscorr.plot |
Plot image of correlation matrix |
cumuplot |
Cumulative quantile plot |
densityplot.mcmc |
Trellis plots for mcmc objects |
densplot |
Probability density function estimate from MCMC output |
effectiveSize |
Effective sample size for estimating the mean |
gelman.diag |
Gelman and Rubin's convergence diagnostic |
gelman.plot |
Gelman-Rubin-Brooks plot |
geweke.diag |
Geweke's convergence diagnostic |
geweke.plot |
Geweke-Brooks plot |
heidel.diag |
Heidelberger and Welch's convergence diagnostic HPDinterval Highest Posterior Density intervals |
line |
Simple linear regression example |
mcmc |
Markov Chain Monte Carlo Objects |
[.mcmc |
Extract or replace parts of MCMC objects |
mcmc.list |
Replicated Markov Chain Monte Carlo Objects |
mcmcUpgrade |
Upgrade mcmc objects in obsolete format |
mcpar |
Mcpar attribute of MCMC objects |
multi.menu |
Choose multiple options from a menu |
nchain |
Dimensions of MCMC objects |
pcramer |
The Cramer-von Mises Distribution |
plot.mcmc |
Summary plots of mcmc objects |
raftery.diag |
Raftery and Lewis's diagnostic |
read.and.check |
Read data interactively and check that it satisfies conditions |
read.coda |
Read output files in CODA format |
read.coda.interactive |
Read CODA output files interactively |
read.openbugs |
Read CODA output files produced by OpenBUGS |
rejectionRate |
Rejection Rate for Metropolis-Hastings chains |
spectrum0 |
Estimate spectral density at zero |
spectrum0.ar |
Estimate spectral density at zero |
summary.mcmc |
Summary statistics for Markov Chain Monte Carlo chains |
thin |
Thinning interval |
time.mcmc |
Time attributes for mcmc objects |
traceplot |
Trace plot of MCMC output |
varnames |
Named dimensions of MCMC objects |
window.mcmc |
Time windows for mcmc objects |
raftery.diag
RafteryとLewisの収束診断判定
Arguments
- data
- q
- r
- s
> # ref)
> list(X = c(-2, -1, 0, 1, 2), Y = c(1, 3, 3, 3, 5)) %>%
+ MCMCregress(formula = Y ~ X,
+ b0 = 0,
+ B0 = 0.1,
+ sigma.mu = 5,
+ sigma.var = 25,
+ data = .,
+ verbose = 1000) -> posterior
MCMCregress iteration 1 of 11000
beta =
3.19324
0.80915
sigma2 = 1.61427
MCMCregress iteration 1001 of 11000
beta =
2.60898
1.49280
sigma2 = 2.84866
MCMCregress iteration 2001 of 11000
beta =
2.97801
1.08769
sigma2 = 1.36040
MCMCregress iteration 3001 of 11000
beta =
3.68719
0.95801
sigma2 = 1.55553
MCMCregress iteration 4001 of 11000
beta =
2.98432
1.48372
sigma2 = 2.89576
MCMCregress iteration 5001 of 11000
beta =
4.66461
1.01585
sigma2 = 3.38204
MCMCregress iteration 6001 of 11000
beta =
2.01093
0.89873
sigma2 = 3.12875
MCMCregress iteration 7001 of 11000
beta =
2.57884
0.84926
sigma2 = 2.47545
MCMCregress iteration 8001 of 11000
beta =
2.83689
0.79065
sigma2 = 1.16678
MCMCregress iteration 9001 of 11000
beta =
2.98664
-0.40700
sigma2 = 4.51122
MCMCregress iteration 10001 of 11000
beta =
3.37259
0.84234
sigma2 = 7.31770
> raftery.diag(posterior)
Quantile (q) = 0.025
Accuracy (r) = +/- 0.005
Probability (s) = 0.95
Burn-in Total Lower bound Dependence
(M) (N) (Nmin) factor (I)
(Intercept) 3 4483 3746 1.200
X 3 4129 3746 1.100
sigma2 2 3680 3746 0.982