AUC: Threshold independent performance measures for probabilistic classifiers.
> library(AUC)
AUC 0.3.0
Type AUCNews() to see the change log and ?AUC to get an overview.
> data("churn")
バージョン: 0.3.0
関数名 | 概略 |
---|---|
AUC-package |
Threshold independent performance measures for probabilistic classifiers. |
AUCNews |
Display the NEWS file |
accuracy |
Compute the accuracy curve. |
auc |
Compute the area under the curve of a given performance measure. |
churn |
Churn data |
plot.AUC |
Plot the sensitivity, specificity, accuracy and roc curves. |
roc |
Compute the receiver operating characteristic (ROC) curve. |
sensitivity |
Compute the sensitivity curve. |
specificity |
Compute the specificity curve. |
auc
AUC曲線による面積(値)の計算。同じくAUCの算出にはMESS::auc
もある。
Arguments
- x
- min... 0から1の範囲の値(既定値 0)
- max... 0から1の範囲の値(既定値 1)
> sensitivity(churn$predictions, churn$labels) %>% auc()
[1] 0.8026259
> specificity(churn$predictions, churn$labels) %>% auc()
[1] 0.4591936
> accuracy(churn$predictions, churn$labels) %>% auc()
[1] 0.5034279
> roc(churn$predictions, churn$labels) %>% auc()
[1] 0.8439201
churn
3つの変量からなるデータセット
> data("churn")
> dplyr::glimpse(churn)
Observations: 1302
Variables:
$ predictions (dbl) 0.000, 0.000, 0.000, 0.216, 0.000, 0.298, 0.326, ...
$ predictions2 (dbl) 0.000, 0.002, 0.010, 0.096, 0.000, 0.232, 0.262, ...
$ labels (fctr) 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, ...
roc
ROC(受信者操作特性)曲線による面積(値)の計算
> roc(churn$predictions, churn$labels) %>% str()
List of 3
$ cutoffs: num [1:220] 1 1 0.972 0.968 0.964 0.96 0.932 0.91 0.908 0.902 ...
$ fpr : num [1:220] 0 0.00262 0.0035 0.0035 0.0035 ...
$ tpr : num [1:220] 0 0.164 0.164 0.182 0.189 ...
- attr(*, "class")= chr [1:2] "AUC" "roc"